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ABSTRACT
Storage channels can be provably eliminated in well-designed, high-
assurance kernels. Timing channels remain the last mile for confi-
dentiality and are still beyond the reach of formal analysis, so must
be dealt with empirically. We perform such an analysis, collecting
a large data set (2,000 hours of observations) for two representative
timing channels, the locally-exploitable cache channel and a remote
exploit of OpenSSL execution timing, on the verified seL4 micro-
kernel. We also evaluate the effectiveness, in bandwidth reduction,
of a number of black-box mitigation techniques (cache colouring,
instruction-based scheduling and deterministic delivery of server
responses) across a number of hardware platforms. Our (somewhat
unexpected) results show that while these defences were highly ef-
fective a few processor generations ago, the trend towards impre-
cise events in modern microarchitectures weakens the defences and
introduces new channels. This demonstrates the necessity of care-
ful empirical analysis of timing channels.

Categories and Subject Descriptors
D.4.6 [Operating Systems]: Security and Protection—Informa-
tion Flow Controls

General Terms
Security, Measurement, Performance

Keywords
Confidentiality; covert channels; side channels; mitigation; micro-
kernels; cache coloring; seL4

1. INTRODUCTION
Unanticipated information leaks are one of the oldest problems

in computer security, with documented cases from as early as the
1940s [NSA, 1972]. Such leaks are traditionally classified as either
storage or timing channels, depending on whether time is used to
exploit them [Wray, 1991].
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We can now prove the absence of storage channels in small and
well-designed security-critical software, such as the seL4 micro-
kernel [Klein et al., 2009, 2014], as demonstrated by the recent
verification of intransitive noninterference for seL4 [Murray et al.,
2013], in C. Notwithstanding some recent promising work, e.g. on
proving upper bounds for and the absence of cache side channels
in block cipher implementations [Doychev et al., 2013; Köpf et al.,
2012] or proving the absence of cache leakage in an abstract hyper-
visor model [Barthe et al., 2012], proofs regarding timing channels
in an operating system, even one as small as seL4, is beyond the
reach of current approaches.

Therefore, for now such channels must be dealt with empirically.
Their bandwidth can be measured by careful experiment, and the
effectiveness of mitigations assessed according to how they reduce
this. Such an empirical approach must be based on sound infor-
mation theory, by accurately measuring and analysing the channel
matrix [Shannon, 1948].

Figure 1 shows the empirical channel matrix (see Section 4.1) of
the cache channel under seL4 on the Exynos4412 platform, which
is summarised in Table 1. Each point {x, y} gives the probabil-
ity of an attacker making a particular observation (y: number of
cache lines touched within a single timeslice) given the working set
size (x: the number of cache lines evicted) of a sending program.
Darker colours are higher probabilities, shown on the scale at right.
The sender here might be an unwitting victim or might collaborate
with the attacker. The clear correlation between the sender’s work-
ing set size and the attacker’s (most likely) observations, shown in
the narrow band of non-zero probabilities, shows that the attacker
can infer this size with high confidence. The bandwidth of the chan-
nel is calculated from this matrix (see Section 4.2), and in this case
is 2400 bits/sec.
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Figure 1: Exynos4412 cache channel matrix, no countermea-
sure. N = 1000, B = 2400 b/s. Colours indicate probabili-
ties, further explanation in Section 4.1.

seL4 is a general-purpose operating system (OS) kernel, de-



signed for security- as well as safety-critical use cases. Its notable
features are comprehensive formal verification, with a complete
proof chain from high-level security and safety properties to binary
code [Klein et al., 2014], and performance at least as good as that
of traditionally-engineered kernels [Elphinstone and Heiser, 2013].

These desirable properties come at a cost. Formal verification
is expensive: a disincentive to modifying the system for a partic-
ular use case (although no worse than traditional assurance pro-
cesses such as Common Criteria [NIST]). We thus look for ways to
combat timing channels in seL4 without undermining its general-
purpose nature.

We consider several timing channels that are relevant to an seL4-
based system, and how they can be mitigated with minimal over-
head, and minimal changes (hence re-verification) to the kernel.
The need for low overhead rules out those that add noise (see Sec-
tion 2). Furthermore, we only consider black box techniques, which
require no insight into the internals of software running on seL4, as
retrofitting security into complex software is generally impossible.

We do not yet aim for comprehensive coverage of timing chan-
nels related to seL4, but analyse representative examples in detail,
to explore the limits of what we can achieve under the above con-
straints. A wider study of timing channels is planned for future
work. Despite these limitations, we make several unexpected ob-
servations that generalise beyond seL4.

We look at one local vulnerability, the cache-contention chan-
nel, and two countermeasures, instruction-based scheduling [Ste-
fan et al., 2013] and cache colouring [Liedtke et al., 1997]. We
also examine a remote vulnerability, the distinguishing portion of
the Lucky 13 attack of AlFardan and Paterson [2013] against DTLS
in OpenSSL 1.0.1c.

The contribution of this paper is robust empirical evidence, at
very high confidence, for the following claims:
• Black-box techniques, such as instruction-based scheduling

and cache colouring, can be highly effective, but are less so
on modern processors. For example, even with a partitioned
L2 cache, flushing the L1 and TLB on a context switch,
we still see a cache-channel bandwidth of 25b/s on a recent
ARM processor (Exynos4412 see Section 5.4). This could
(in theory), be exploited to leak a 1024 bit encryption key in
a little over 40 seconds.
• On recent ARM processors, the instruction counter provides

a timing channel not previously described, and with a band-
width of 1100b/s, if exploited using the preemption tick as a
clock. This channel can be closed by virtualising the counter.
• The “constant-time” Lucky 13 fix in OpenSSL 1.0.1e still

exhibits a considerable side channel, at least on ARM.
• Operating-system techniques provide better mitigation of

OpenSSL’s Lucky 13 channel at lower performance penalty
(10µs vs. 60µs latency).

We conclude that timing channels, especially local channels, re-
main a real threat and are becoming more difficult to close. How-
ever, in the right environment, simple mitigations, carefully de-
ployed on a well-designed kernel, can be effective. As hardware
becomes more complex and opaque, any assurance case must be
backed by solid, empirical analysis on the deployment platform.

2. TIMING CHANNELS: BACKGROUND
A timing channel transfers information in the (relative) timing of

events. The OS does not usually control the timing of all events in
the system. Timing channels thus often bypass operating system
protections, and so pose a threat to confidentiality.

Despite decades of research, timing channels continue to plague
mainstream systems [AlFardan and Paterson, 2013; Hund et al.,

2013]. Historically, concern about timing channels was confined to
high-assurance systems: certified separation kernels are required
to limit their bandwidth [IAD] and the NSA provides guidance
on how to avoid cache channels for systems built on secure real-
time OSes [NSA]. While they remain a concern for modern high-
assurance systems [Owen et al., 2011], timing channels are now
recognised as a threat to co-tenant cloud computing [Ristenpart
et al., 2009], in which mutually distrusting tenants pay for access to
common computing infrastructure. Hence timing channel mitiga-
tion has again become a hot topic in computer security [Kim et al.,
2012; Stefan et al., 2013; Zhang and Reiter, 2013].

One high-bandwidth timing channel is the cache-contention
channel, which we cover in Section 5. In a cloud context, this
channel has been exploited to learn high-value secrets like encryp-
tion keys [Zhang et al., 2012]. An otherwise isolated sender and
receiver share one or more processor caches, which reduce ac-
cess times to blocks of memory by keeping copies close to hand.
A channel exists when the sender can influence which of the re-
ceiver’s blocks are in the cache, since this affects the time it takes
the receiver to access its memory. The event being observed here
is the completion of a memory access by the receiver; the sender
influences how long this event takes to arrive.

To measure the time between events, the receiver needs a clock:
an independent event source. The observed channel is also a clock,
each observation constituting an event. A timing channel exists
between a sender and a receiver whenever the receiver has access
to two clocks, and the sender controls their relative rates [Wray,
1991].

0

4

8

12

16

0 2 4 6 8 10 12

In
je

ct
ed

no
is

e
(b

)

Capacity (b)

uncorrelated noise
anticorrelated noise

Figure 2: Correlated vs. anti-correlated noise against channel
capacity.

Mitigation strategies, or countermeasures, are techniques that
reduce information transmitted on a channel. Established strate-
gies fall into three categories: (i) restricting the receiver to a single
clock, (ii) limiting the sender’s influence over the rate of the re-
ceiver’s clocks (i.e. increasing determinism) and (iii) introducing
noise into these clocks to make it harder to recover the signal being
transmitted (as in fuzzy time [Hu, 1991]).

Introducing noise is inefficient if high security is needed: Fig-
ure 2 plots the level required to reduce the capacity of a 12-bit chan-
nel to any desired level, if that noise is either uncorrelated (and uni-
formly distributed), or perfectly anti-correlated with the signal (i.e.
reducing it). While 12 b of anticorrelated noise closes the channel,
the level of uncorrelated noise required increases asymptotically as
we approach zero. Reducing the capacity by more than an order
of magnitude requires huge amounts of noise, severely degrading
overall system performance. The countermeasures we consider all
build on this insight.

As a program can always observe its own progress, it always has
access to one clock, its program counter (PC). Hence, restricting to
a single clock requires denying any access to wall-clock time and
ensuring that all observable events are synchronised to the PC, or



ensuring that the PC is synchronised to wall-clock time.
Preemptive schedulers usually allocate processing time in fixed

time slices. If the receiver can detect preemption events (e.g. via
a helper thread), it obtains enough wall-clock time information to
calibrate its PC clock, and thus time the channel events.

Instruction-based scheduling mitigates this channel by preempt-
ing not at fixed intervals, but after some fixed number of instruc-
tions. Stefan et al. [2013] explored this approach, and we cover it
in Section 5.3.

Cache partitioning [Liedtke et al., 1997] is a well-known and
recently-explored [Godfrey, 2013] countermeasure that ensures
that the sender cannot influence which of the receiver’s blocks are
in the cache, and thus cannot alter the time taken for the receiver to
access its memory. We cover this in Section 5.4.

We cannot deny wall-clock time to a remote attacker. We instead
rely on making receiver-observable events deterministic. We exam-
ine this case using a remote client, the receiver, interacting with a
server, who is the (unwitting) sender. Any variation in response
time creates a channel. We mitigate this by enforcing a minimum
bound on the server’s response time; ensuring that responses are
only released after some pre-determined interval, in order to imple-
ment a delay-based policy (e.g. [Askarov et al., 2010; Zhang et al.,
2011]). This is the subject of Section 6.

3. THREATS & COUNTERMEASURES
As described, we explore mitigations against several different

attacks, each with its own threat model. Across all scenarios we
assume an attacker who is trying to learn some secret information.
We make no assumptions about this secret—for instance, that it is
selected uniformly at random. We also assume an attacker with
arbitrarily high computational power. Our goal is to prevent the
attacker from learning the sender’s confidential information.

The mitigations have in common that they are noiseless, i.e. they
attempt to reduce the signal on the channel rather than increasing
the noise, aiming to minimise performance impact. They are also
black box techniques, i.e. do not require modifications to or even an
understanding of the internals of applications: all are implemented
at the OS level.

3.1 Cache channel
As a local vulnerability we examine the cache-contention chan-

nel, which arises when sharing a memory subsystem between oth-
erwise isolated domains. Here the receiver attempts to obtain se-
crets from a malicious sender partition. We assume a single-core,
time-shared system, such as a multi-level secure (MLS) system or
cross-domain solution. We assume further that the system has been
configured appropriately so that no storage channels exist between
the sender and receiver, and no devices are shared between them
other than the CPU, bus and memory hierarchy (caches and main
memory). The absence of storage channels implies that no region
of physical memory is shared between the attacker and sender.

We assume a well-designed system with a minimal trusted com-
puting base (TCB). The TCB will not intentionally leak secrets,
but other components might. Under the classical distinction [Wray,
1991] between covert channels and side channels, in which the for-
mer involves intentional leakage while the latter is unintentional,
we assume that trusted components leak secrets only over side
channels, while untrusted ones also employ covert channels.

We use two countermeasures here: Instruction-based schedul-
ing (IBS) and cache colouring, both introduced above. The former
synchronises the clocks observable by the receiver, while the latter
eliminates contention on the cache (i.e. the signal). In addition to
the above assumptions, IBS requires that the receiver can be iso-

lated from any notion of real time (as would be provided by physi-
cal devices or network connectivity). It is therefore only applicable
in restricted circumstances.

3.2 Lucky Thirteen
As a remote vulnerability, in Section 6, we reproduce the distin-

guishing attack (“Lucky thirteen”) of AlFardan and Paterson [2013]
against DTLS, as implemented in OpenSSL version 1.0.1c, and
demonstrate that the current version (1.0.1e) is still vulnerable.

We mitigate this channel, with better performance and lower
overhead than the state of the art solution, using a black box tech-
nique: we employ real-time scheduling to precisely delay messages
and thus hide timing variation.

4. METHODOLOGY
We work from a large corpus of statistical observations. From

this we construct a channel matrix, and calculate summary mea-
sures, such as Shannon capacity, similarly to Gay et al. [2013].
Comparing the bare and the mitigated channels allows us to deter-
mine the effectiveness of a mitigation strategy.

We view the channel connecting a sender and a receiver as a
pipe, into which the sender places inputs, drawn from some set I ,
and the receiver draws outputs, from some set O. For instance, in
the cache-contention channel, the sender might touch some subset
of its allocated memory, to ensure that a particular fraction of the
cache is filled with its modified data; while the receiver touches as
many lines as it can in some interval. The number of dirty lines
that must be cleaned to RAM affects the receiver’s progress. The
input i ∈ I is thus the number of lines touched by the sender, and
the output o ∈ O the number touched by the receiver, from which
it attempts to infer i.

4.1 The Channel Matrix
The channel matrix captures the end-to-end behaviour of a chan-

nel. It has a row for each output o ∈ O and a column for each
input i ∈ I . The value at position {i, o} gives the (conditional)
probability of the receiver seeing output o (e.g. touching o lines) if
the sender places input i into the channel (evicting i lines).

For example, Figure 1 is the channel matrix for the cache chan-
nel as measured on the Exynos4412 with no countermeasures. Each
point gives a conditional probability, with darker colours for higher
values, on a log scale. For instance, if the sender evicts 8,000 lines,
the receiver will touch around 20,000. Here, the output clearly
varies with the input (the more lines evicted, the fewer the receiver
touches), and the figure intuitively captures this correlation and thus
the existence of the channel.

Each channel matrix is built by testing all possible inputs, and
observing for each a large number, N , of outputs (the sample size).
Counting these gives a histogram that records for each output, o,
the number of times, ni,o, it was observed for each input, i. The
estimated conditional probability of seeing o given i, the cell {i, o},
is thus ni,o/N . Each column of the channel matrix in Figure 1, for
instance, consists of 1000 observations (sample size N = 1, 000).

We use a synthetic receiver to observe the channel. For the
cache-contention channel depicted in Figure 1, the receiver uses the
preemption tick to provide a regular sampling interval to measure
the number of lines it managed to touch. We assume a malicious
sender (see Section 3.1): we use a synthetic sender that varies its
cache footprint according to i, the value to transmit.

For the remote channel (Section 6), for which we assume non-
malicious (unintended) leakage, OpenSSL’s vulnerable DTLS im-
plementation forms the sender. The receiver in this case executes
the distinguishing portion of the Lucky 13 attack [AlFardan and Pa-



terson, 2013], which measures the response times for two different
packets, M0 or M1. The set I consists of these two input packets.

Owing to the large number of input and output symbols (columns
and rows), the channel matrices themselves are large—the analo-
gous matrix to Figure 1 for the E6550 (see Table 1) would occupy
4.8 TiB if stored in full. We take advantage of the sparseness of
the matrices—for any given input there are a only a small num-
ber of outputs that occur with non-zero probability—to compress
them. Even so, the largest of our compressed matrices still occu-
pies 380 MiB when using single-precision floating point to store its
entries.

The channel matrix represented by Figure 1 has 32,768 columns
(input symbols) and 45,000 rows (output symbols), for a total of 1.5
billion cells (conditional probabilities). This is much larger than
those usually considered in the literature, and demonstrates that a
numerical approach scales to realistic problem sizes.

4.2 Measures of Leakage
Given the channel matrix, we can calculate the Shannon capac-

ity [Shannon, 1948], denoted C, a standard summary measure of
capacity. We use a sparse matrix implementation of Yu’s improved
form [Yu, 2010] of the Arimoto-Blahut algorithm (ABA) [Arimoto,
1972; Blahut, 1972]. Multiplying by the sampling rate (333 Hz in
most of our experiments, as explained shortly) gives the channel
bandwidth, denoted B, in bits per second.

There are two additional quantities that we use where appropri-
ate (e.g in Section 6): the maximum vulnerability, denoted Vmax,
and the min-leakage, denotedML. Vmax is the greatest likelihood
(among all possible secrets), of an optimal (computationally un-
bounded) attacker correctly guessing the secret, given what it has
observed. This is a safe upper bound on the vulnerability of the
system. As we shall see in Section 6, the bound is tight, as it can
be achieved by an attacker in sufficiently simple examples.
ML is a pessimistic analogue to the Shannon capacity. Whereas

Shannon capacity can tell us the average amount of information
leaked by a channel, min-leakage gives the worst case. It is the rate
of change of the min-entropy (H∞), given an observation. Thus
H∞(final) = H∞(initial) −ML. The min-entropy, in turn, is
simply the (log) vulnerability of a distribution given no more leak-
age i.e. H∞ = − log2 maxx Px. For further details see Köpf and
Basin [2007]; Smith [2009].

4.3 Low-Capacity Channels
For a matrix such as Figure 1, the existence of a channel is ob-

vious, and calculating its bandwidth is straightforward. In other
cases, however, it is not. Figure 3 shows the same channel with a
countermeasure applied (cache colouring). The figure shows plenty
of noise but no apparent variation between columns, suggesting that
different inputs are indistinguishable to the receiver. We nonethe-
less calculate a nontrivial bandwidth of 27 bits per second. We
analyse this residual channel in Section 5.4.

A channel with a true bandwidth of zero may nonetheless ap-
pear to have a small nonzero bandwidth when we sample it: given
a finite number of samples, the reconstructed output distributions
for two different inputs will appear slightly different due to sam-
pling error. This will make inputs appear distinguishable when in
fact they are not. Analysis of a large number of synthetic matri-
ces demonstrates that the effect of sampling error on small chan-
nels (C � 0.1 b) is to increase their apparent capacity (by making
identical distributions appear to differ slightly) and on large chan-
nels (C � 0.1 b) is to decrease it (by making the output distri-
butions appear to overlap more than they really do), although the
latter effect is small.
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Figure 3: Exynos4412 cache channel with cache colouring.
N = 7200,B = 27b/s,CImax

0 = 15b/s.
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for 0-bandwidth matrices derived from Figure 3, with least-
squares fitted curve.

We use a simple statistical test to determine whether any appar-
ent capacity (and hence bandwidth) results from sampling error. If
the capacity is really zero, the output distribution (a vertical slice
through the matrix) must be identical for all inputs (otherwise they
would be distinguishable). In that case, the samples that made up
each column must be drawn from the same distribution. We obtain
this hypothetical distribution on outputs by averaging the channel
matrix along its rows, resulting in an effective sample size of N
times the number of columns. From this we sample 1,000 new ma-
trices, each representing a true zero-capacity channel, and calcu-
late their apparent capacities. The greatest bandwidth among these
(multiplying by sample rate) we label CImax

0 , or the greatest value
in the 99.9% confidence interval for the apparent bandwidth of a
zero-capacity channel. If the actual measured bandwidth lies above
CImax

0 , then there is only a one in 1,000 chance that this apparent
capacity is the result of sampling error, and is strong evidence that
there is a real underlying channel.1

For example, in Figure 3, B = 27 b/s, which is above CImax
0 =

15 b/s, and thus there is a channel, despite the graph seemingly
showing no horizontal variation.

Figure 4 shows how the number of samples required scales with
the desired resolution. The points give the apparent bandwidth
solely due to sampling error for matrices (derived from Figure 3,
as already described), with a varying number of samples per col-
umn. The noise level drops with 1/x—the curve is a least squares
fit to 1

ax+b
. We see that in order to detect a channel of bandwidth

10 b/s, we would require 32,000 samples per column (for a thresh-
old of detection where the noise is lower than the measured signal).
Clearly, at some point the number of samples required will become
1If the apparent bandwidth is belowCImax

0 , the test is inconclusive:
there is no evidence of a channel, but that is not evidence of no
channel.



unfeasibly large, and a different technique will be required. The
current approach does suffice however, for a number of small resid-
ual channels, as we shall shortly demonstrate.

4.4 Data collection
Collecting observations takes time. Each sample used to build

Figure 3, for example, takes 3 ms. The 230 × 106 samples in this
figure thus represent 200 hours of cumulative observation. In to-
tal, this project involved collecting 4.1 GiB of (compressed) sample
data, across roughly 2,000 hours of observations over a 12 month
period. A large number of samples was necessary to obtain the sta-
tistical power to detect the smallest of the channels that we report.

The software used to generate these matrices, and perform the
necessary statistical analysis is available as open source.2

The local cache channel is highly sensitive to hardware prop-
erties (memory architecture and processor microarchitecture). We
therefore evaluate it on a number of recent ARM and x86 platforms,
Table 1 shows the platforms and their properties. In all cases, our
experiments were run with the sender and receiver sharing the same
CPU core.

5. LOCAL CACHE CHANNEL

5.1 Exploiting the channel
Caches are divided into lines, small, equally-sized blocks of a

few dozen bytes in length. Each line holds the contents of an
aligned memory block of the same size. Modern CPU caches are
set associative, meaning that each memory block may reside in a
fixed subset of cache lines, typically determined by a number of
index bits taken from the block’s address. The cache lines are thus
partitioned into a number of identically-sized sets; the number of
lines per set is the associativity of the cache. The address of a mem-
ory block determines the unique cache set in which it may reside,
and thus which lines it may occupy. The subset of the cache in
which a particular memory block can reside is its cache colour.

char A[ L ] [ L_SZ ] ;

void s e n d e r ( void ) {
i n t S ;

whi le ( 1 ) {
f o r ( i =0 ; i <S ; i ++) {

A[ i ] [ 0 ] ^= 1 ;
}

}
}

char B[ L ] [ L_SZ ] ;
v o l a t i l e i n t C ;
void r e c e i v e r ( void ) {

whi le ( 1 ) {
f o r ( i =0 ; i <L ; i ++) {

B[ i ] [ 0 ] ^= 1 ;
C++;

}
}

}

void measure ( void ) {
i n t R , C1 , C2 ;
whi le ( 1 ) {

C1=C ;
do { C2=C ; }

whi le ( C1==C2 ) ;
R=C2−C1 ;

}
}

Figure 5: Preemption tick exploit code.

On loading a block into an already full set, some other entry must
be evicted. Thus, if sender and receiver have access to (disjoint)
blocks of memory that map to the same cache set, the sender can

2http://ssrg.nicta.com.au/software/TS/channel_tools/

evict the receiver’s blocks from the cache by touching its own (load-
ing them into the cache). This is the basis of the cache-contention
channel we analyse in this section.

Pseudocode to exploit this channel is given in Figure 5. Sender
and receiver run alternately, sharing a core, with access to disjoint
memory partitions. Arrays A and B each cover the entire last-level
cache (L2). These arrays are allocated from physically contiguous
memory, thus covering all cache sets. The receiver touches one
word of each line in the cache, filling the cache with its own data.
By measuring its rate of progress (via a helper thread, measure()),
the receiver infers how many of its blocks were already cached.
The sender communicates by evicting some number, S, of these
(the channel input). The receiver sees the number of lines touched
in a fixed interval, R (the channel output) which, as established,
depends on S.

In this example we use the preemption tick to determine the mea-
surement interval, as an example of a clock that is difficult to elimi-
nate, although any regular event would do. Here, the simple round-
robin scheduler of seL4 inadvertently provides a precise real-time
clock.

As indicated, we consider two mitigations against this channel.
Cache colouring eliminates the channel by partitioning the cache
between sender and receiver, and requires no other restrictions on
the system. Instruction-based scheduling prevents the use of the
preemption tick as a clock by tying it to the receiver’s progress, but
to be useful requires that all other clocks have also been removed. It
is, however, applicable to other channels (e.g. the bus), while cache
colouring is specific to the cache channel.

5.2 Unmitigated channel
We first analyse the channel with no countermeasures, to estab-

lish a baseline. Figure 1 gives the results for the Exynos4412, ob-
tained by taking N = 1000 samples for each value of S. All tested
platforms produce very similar results.

As the sender evicts more of the receiver’s lines from the cache,
the number of cache lines that the receiver touches in each time
slice decreases. This occurs as it takes longer for the receiver to
touch evicted lines, and thus it touches fewer lines during each
fixed time slice. The unmitigated channel’s Shannon capacity, or
the expected leakage per observation, is calculated from the chan-
nel matrix as explained in Section 4.2. The capacity of this channel
is 7 bits.

We calculate bandwidth as follows: Each observation requires
three time slices (of 1 ms each), one for each of the sender and the
two receiver threads, or a total of 333 observations per second. As
each leaks 7 bits, the bandwidth is approximately 2.3 kb/s.

5.3 Instruction-based scheduling
As described, IBS removes the preemption-tick clock from the

receiver, assuming that all other time sources are already gone. On
seL4 we could thwart this particular exploit by preventing the re-
ceiver from creating its helper thread: seL4’s strong resource man-
agement model provides control over the kernel-scheduled threads
a task can create. This would further restrict application, and does
not apply to most operating systems.

To implement IBS, we modify seL4 to trigger preemptions each
time some fixed number, K, of instructions has executed. This
is easily achieved with the help of the performance management
unit (PMU) available on modern CPUs, which can be configured
to generate an exception after some number of events (here retired
instructions).

Implementing this in seL4 on ARM requires changing only 18
lines of code, and x86 is similarly straightforward. Because this



Processor iMX.31 E6550 DM3730 AM3358 iMX.6 Exynos4412
Manufacturer Freescale Intel TI TI Freescale Samsung
Architecture ARMv6 x86-64 ARMv7 ARMv7 ARMv7 ARMv7
Core type ARM1136JF-S Conroe Cortex A8 Cortex A8 Cortex A9 Cortex A9
Released 2005 2007 2010 2011 2011 2012
Cores 1 2 1 1 4 4
Clock rate 532 MHz 2.33 GHz 1 GHz 720 MHz 1 GHz 1.4 GHz
Timeslice 1 ms 2 ms 1 ms 1 ms 1 ms 1 ms
RAM 128 MiB 1024 MiB 512 MiB 256 MiB 1024 MiB 1024 MiB
L1 D-cache

size 16 KiB 32 KiB 32 KiB 32 KiB 32 KiB 32 KiB
index virtual physical virtual virtual virtual virtual
tag physical physical physical physical physical physical
line size 32 B 64 B 64 B 64 B 32 B 32 B
lines 512 512 512 512 1024 1024
associativity 4 8 4 4 4 4
sets 128 64 128 128 256 256

L2 cache
size 128 KiB 4096 KiB 256 KiB 256 KiB 1024 KiB 1024 KiB
line size 32 B 64 B 64 B 64 B 32 B 32 B
lines 4096 65536 4096 4096 32768 32768
associativity 8 16 8 8 16 16
sets 512 4096 512 512 2048 2048
colours 4 64 8 8 16 16

Table 1: Experimental platforms.

change is small and localised, our previous experience [Klein et al.,
2014] with re-verification of code changes for seL4 suggests that it
should be straightforward to verify.

Effectiveness of instruction-based scheduling
We re-run the experiments used to generate Figure 1 with
instruction-based scheduling enabled. Under IBS, timeslices are
no longer constant, although in practice the variation is small. To
compare with our other results, we normalise the bandwidth of the
IBS channel to a sampling rate of 333Hz. This could be achieved,
for example on the DM3730 (1GHz clock), by setting K = 106

(assuming 1 instruction per cycle). In practice, once sender and
receiver start contending, and hence stalling more often, the real
timeslice will grow (as instructions take longer on average to exe-
cute). The effect is to reduce the available bandwidth, and hence
normalised results are a safe worst-case estimate.

The results from using IBS (for compatibility with existing data,
we ran with K = 105 rather than K = 106) for all platforms
are summarised in Table 2. For the simplest (and oldest) core, the
ARM1136-based iMX.31, the mitigation is perfect (down to the
limit of our statistical precision), showing a 20,000-fold reduction
in capacity, from 1,400 b/s down to 0.1 b/s. However, for the more
recent platforms, significant channels remain. On the Exynos, for
example, the channel bandwidth is reduced by a factor of 87, still
leaving a remaining channel of 27 b/s. While the channel matrix is
now a very narrow band, it still has horizontal structure, as shown
(greatly magnified) in Figure 6.

As we move to more complex cores the results get steadily
worse, until we reach the Cortex A9-based Exynos4412 and the
Conroe-based E6550, which show a reduction factor of only 6
and 154 respectively. Looking at the channel matrix for the
Exynos4412 in Figure 6 suggests an explanation. As we preempt
after 100,000 instructions, and each receiver loop iteration (and
hence line touched) takes exactly 10 instructions, we expect to
see precisely 10,000 lines touched per preemption. On the sim-
pler cores, that is exactly what we see, but in Figure 6 the number
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Figure 6: Exynos4412 cache channel with IBS. N = 1000,
B = 400b/s,CImax

0 = 1.2b/s.

clearly varies according to the level of contention.3

Most of the variation here is due to delaying the PMU interrupt.
The interrupt arrives 12 iterations (120 cycles) late without con-
tention, dropping to 8 (80 cycles) when the sender fills the L1 cache
(512 lines, thus contending in the L2), and further to 40 cyc once
we pass the size of a single L2 cache way (2048 lines), and start
to see self-conflict misses. It seems that the core delays the ex-
ception until a break in the instruction stream, e.g. a stall due to a
cache miss, and thus the overshoot drops as the rate of misses in-
creases (and thus the likelihood of a stall shortly after the exception
is raised).

An approach that we are yet to try, is to configure the PMU to in-
terrupt a little earlier than whenK instructions have been executed,
and then single-stepping the processor using hardware breakpoints
until precisely the Kth instruction. This strategy has previously
proved effective in the context of execution replay [Dunlap, 2006].

5.4 Cache colouring
Unlike IBS, cache colouring does not require denying the re-

3The variation in Figure 6 is on the order of 10 cycles, and is ex-
pressed as an offset from the expected value of 10,000. Figure 8
(top) is presented similarly.



Baseline Instruction-Based Scheduling Cache Colouring
Platform B (b/s) N B (b/s) N Factor CImax

0 B (b/s) N Factor CImax
0

iMX.31 1,400 7,000 0.1 10,000 20200 0.02 7.1 63,972 200 3.8
AM3358 1,600 6,000 0.6 10,000 2700 0.32 5.0 49,600 330 2.7
DM3730 1,800 8,000 0.5 10,000 3500 0.26 1.7 63,200 1000 0.9
iMX.6 2,100 800 - - - - 12 11,400 180 6.3
Exynos4412 2,400 1,000 400 1,000 5.9 1.2 27 7,200 87 15
Exynos4412(TLB flush) 2,400 1,000 - - - - 25 7,200 94 13
E6550(2ms TS) 1,500 1,000 9.5 600 150 11 76 4,836 19 42
E6550(improved) 3,000 800 - - - - 120 7,500 26 62

Table 2: Mitigation effectiveness against the pre-emption clock across platforms. 1ms timeslice unless noted.
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line index
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Figure 7: Cache colouring on the Exynos4412, showing colour
bits 15–12, where frame number and cache set selector overlap.

ceiver wall-clock time. Colouring partitions the cache between
sender and receiver, preventing contention. This is achieved by
colouring all physical memory, and allocating disjoint colours to
different partitions. Colouring of memory happens at page granu-
larity, as this is the OS-level allocation unit.

Figure 7 illustrates colouring on the Exynos4412. Its 32 B cache
lines are indexed by the 5 least significant bits (4–0) of the physical
address (PA), while the next 11 bits (15–5), the cache set selector,
are used to select one of 2048 16-way associative sets. A 4 kiB
frame is identified by the top 20 bits (31–12) of the PA: its frame
number. Note that the last four bits of the frame number (15–12,
highlighted) overlap with the top bits of the cache selector—the
sets covered by a frame depend on its location. Two frames whose
addresses differ in any of these colour bits will never collide. We
thus divide memory into a number (here 24 = 16) of coloured
pools, and assign partitions to separate pools.

We partition not just user code and data, but also the kernel heap
(using seL4’s allocation model [Klein et al., 2014]). We also repli-
cate the kernel’s code in each partition. An improved version (see
below) also colours the kernel stack; colouring kernel global data
is future work, as it is only small, and not under user control.

The L1 caches of our platforms either have only one colour
(cache size divided by associativity does not exceed page size),
and therefore cannot be partitioned by colouring, or are indexed
by virtual address (which is outside of OS control). Therefore the
L1 caches must be flushed on a partition switch to prevent a timing
channel.

Cache Colouring Effectiveness
Table 2 summarises the results, and Figure 3 shows the channel
matrix for the Exynos4412, those for other platforms are similar
(see Cock [2014]). For the simpler cores (iMX.31, AM3358 &
DM3730) we see a great reduction in bandwidth (factor 200–1000).
Yet, every result here fails the statistical test introduced in Sec-
tion 4: The bandwidth we see has less than a one in 1000 chance of
being produced for a channel of a true bandwidth of zero.

The results are particularly unimpressive on the more complex
Exynos4412 and E6550 (factor 20–90). We see a similar pattern
as for IBS: mitigation is effective on older, simpler cores (although
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Figure 8: Residual TLB channel on the Exynos4412.

less so than IBS), and becomes steadily worse as the cores become
more complex, although becoming more effective than IBS on the
more recent chips.

Figure 8 provides an explanation for the Exynos4412. In the top
plot, we see the column average, shown in blue (lower line), of
Figure 3. This is the expected value of the channel output (num-
ber of lines touched), for each input (number evicted). Here we
see a small, but clear variation, on the order of 5 parts in 10,000,
depending on the eviction rate. The cause is shown by the corre-
sponding blue (lower) curve in the bottom plot: as the rate of stalls
due to TLB misses increases, the rate of progress of the receiver de-
creases. The sender and receiver are competing in the TLB, which
is not partitioned by cache colouring (the first-level TLBs on this
chip are fully associative, and thus cannot be coloured). Flushing
the TLB on a context switch eliminates the variation, as shown by
the red curve in the top plot, at the cost of an increased miss rate
(bottom plot).

This effect occurs on all ARM platforms tested, and explains
some of the residual bandwidth. The result of flushing the TLB on
each context switch is given in Table 2, where the residual band-
width has dropped from 27 to 25 bits per second. There is clearly
still some interference effect, as the bandwidth is still higher than
the confidence threshold of 13 b/s. We have not yet managed to
identify this further source of contention, although we have ruled
out contention in the branch predictors, which are reset by the full
L1 cache flush between partitions. While it is disappointing that we
have not yet managed to completely close the channel, the empiri-
cal approach ensures that we do not have a false sense of security.

On close inspection of the E6550 matrix of Figure 9, we find an-
other small but detectable artefact at half the L2 cache size (32,768
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lines). The effect is clearer in the column averages, plotted in red.
This cannot be TLB contention, as the TLB on this chip is not

tagged, and is thus automatically flushed on every context switch.
Rather, it appears to be due to the sender triggering instruction-
cache misses in the kernel. Note that, with the effective cache size
halved by colouring, the observed effect coincides with the point at
which the sender completely dirties the L2 cache. As the caches on
this chip are inclusive, this also evicts kernel code for the sender’s
domain.

The correlation is confirmed by the blue curve, which plots the
anomaly if the sender is given only 1/4 of the cache. As expected,
the artefact moves to 16,384 lines. We eliminate this sharp artefact
with an improved implementation: colouring the kernel stack, and
flushing the L1 caches with coloured data arrays (see Section 5.6
for details on x86 L1-cache flushing).

The results are given in row 7 of Table 2: the observed bandwidth
shifts from 76 to 120 bits per second. Taking into account that the
new implementation has brought the timeslice length into line with
other platforms (halving it from 2ms to 1ms), this represents an im-
provement of 30% (with a 1ms timeslice, the old implementation’s
bandwidth would double to 150 b/s). There is, however, clearly still
a residual channel, as CImax

0 is only 62.
Overall, we see that while cache colouring remains broadly ef-

fective (if it can be implemented, and all residual channels are care-
fully eliminated), it is getting harder to implement on newer hard-
ware. This is exactly the same trend that we see for IBS: Undoc-
umented behaviour on complex CPUs is essential to both counter-
measures, yet is becoming steadily harder to reverse-engineer, and
sometimes renders implementation seemingly impossible.

5.5 Unexpected Channels
While analysing the results of the previous section, we discov-

ered two interesting and unexpected results: First, a way to greatly
increase the signal-to-noise ratio in a contention channel (thus
boosting its usable capacity), and that the cycle counter provides
an entirely new channel due to branch prediction.
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Figure 10: AM3358 cache channel, cache colouring, showing
cycle counter variation. N = 100,B = 2900b/s.

We instrument the while loop of the measure thread in Fig-
ure 5 to show the number of cycles spent executing the busy loop
and the two background threads, on the AM3358. Given that the
residual channel on this platform is small (5.0 b/s), we expect to see
no strong correlation with the sender’s eviction rate. Yet Figure 10
shows a strong effect, with a measured bandwidth of 2,900 b/s.

The cause is suggested by the fact that the variation is of almost
exactly 532,000 cycles, or one 1 ms preemption period at 532 MHz.
We see a slight variation in where the preemption point falls, lead-
ing to the inner loop either terminating immediately (if the thread
is preempted, and the shared counter C updated, after it is read),
or running for a full timeslice if the preemption falls elsewhere. A
variation of a few cycles (maybe just one) is magnified enormously,
under the sender’s control.

The effect is to eliminate the noise in the receiver’s measurement,
allowing the full capacity to be realised. It is important to note that
the number of discrete input and output symbols (the amount of
underlying variation that the sender controls) still places an upper
bound on channel capacity. This example reinforces the point we
made in Section 2 that adding noise is less effective than limiting
the underlying signal—Figure 10 shows that the noise can be elim-
inated by unexpected means, but the exploitable variation remains.

The Cycle Counter Channel
Some (barely visible) artefacts in Figure 10 point to a previously
unreported channel. Zooming into the first few iterations (Fig-
ure 11) shows a weak effect at 7 evictions, where the previously
constant value splits in three, and a stronger one at 10, where it set-
tles on the lowest of the three. Each of these drops is almost exactly
53,200 lines, or 10% of a timeslice.
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Figure 11: AM3358 cache channel, cache colouring. Cycle
counter effect of mispredicts. N = 997,B = 1100b/s.

The number of branch mispredicts per iteration (red line) pro-



vides an explanation. Assuming that the sender and receiver touch
lines at roughly the same rate (we only recorded the receiver’s rate),
we see roughly one branch misprediction per loop iteration, once
the loop is longer than 10 iterations, and 7 in rare cases.

The precise cause of these mispredicts is unclear (the loop should
be correctly predicted for 9/10 iterations), but the correlation with
the cycle counter is clear, with a small drop beginning at 7 itera-
tions (exaggerated by the log scale for probability), and finishing at
10. It appears that a branch mispredict leads to the counter miss-
ing a single cycle. Note that the wall-clock time between samples
is unaffected, only the cycle counter’s value varies, giving an ex-
ploitable bandwidth of 1,100 bits per second.

We conclude that the reported value of the cycle counter is im-
precise on ARM, and the imprecision is correlated with branch mis-
predicts. The cycle counter is globally visible, unless virtualised,
thus giving rise to a timing channel not previously reported. This
channel is distinct from traditional ones involving branch predic-
tion, where contention in the branch target buffer (BTB) leads to
variations in runtime [Aciiçmez et al., 2006]. The obvious defence
is virtualising the cycle counter, which is possible on both x86 and
ARM.

5.6 Cost of countermeasures
IBS can be implemented without run-time overhead, it simply

replaces the timer with the PMU as an interrupt source. (It reduces
fairness somewhat, as memory hogs now get longer time slices.)

Cache colouring has two costs: flushing the L1 caches and TLB
on a partition switch, and reducing the effective cache size. The
latter cost depends on the size of the working set of the application
code: it is worst if the working set just fits into the cache, and negli-
gible if the working set is less than half the cache size. The isolation
provided by colouring can also occasionally increase performance
[Tam et al., 2007].

The direct cost of an L1 flush is low on ARM (single instruc-
tion) and expensive on x86 (due to lack of support for a selective
L1 cache flush, requiring the kernel to replace any useful data by
traversing large arrays and jump tables). The indirect cost (of a
cold cache) can be expected to be low: The flush is only needed at
a partition switch, which only occurs at the end of a time slice (of
1 ms or ≈ 1M cycles). The DM3730’s 512-line cache, with a miss
latency of 12 cycles4 takes roughly 6,000 cycles to refill, or 0.6% of
a timeslice, which constitutes an upper bound on the indirect cost.
In most cases this cost will be much smaller, as the L1 cache is
normally cold after a partition switch even without flushing (given
that other process have been executing for at least 1 M cycles).

The TLB flush also has low direct cost, and it is likely to be
cold after a partition switch, resulting in low indirect cost. The full
cost of a TLB refill on the DM3730 is ≈ 64 entries× 50 cycles =
3200 cycles.

6. REMOTE TIMING SIDE-CHANNELS
Both countermeasures evaluated so far address local channels

due to shared hardware. In this case we have some control over
the attacker, either over its resources (as in cache colouring), or
its access to time (as in IBS). Remote channels require a different
approach, as the attacker is effectively unrestrained. In particular, a
remote attacker must be assumed to have an accurate clock.

6.1 OpenSSL vulnerability
We first demonstrate the ease with which remote side-channel at-

tacks can be carried out at essentially unlimited distance, and then

4http://www.7-cpu.com/cpu/Cortex-A8.html

present the scheduled delivery countermeasure, which uses a mon-
itor to hide response-time variations.

As a realistic vulnerability, we replicate the strongest form of
the Lucky 13 attack of AlFardan and Paterson [2013]—the dis-
tinguishing attack against Datagram TLS (DTLS) [Modadugu and
Rescorla, 2004], with sequence number checking disabled. By suc-
cessfully addressing this we also address its weaker forms, in par-
ticular plaintext recovery, which use the same mechanism.

The attack uses the fact that TLS first calculates the MAC (mes-
sage authentication code, or digest), and then encrypts it. This al-
lows intercepted packets to be submitted to a server, which will
then decrypt and begin to process them before their authenticity
is established. We exploit the non-constant execution time of the
MAC check itself by manipulating the padding in the packet. Ulti-
mately, we construct two packets: M0 andM1, that take a different
length of time to process, before being rejected (the MAC of the
manipulated packet will fail), where the time depends on the (en-
crypted) contents. We distinguish two encrypted packets by inter-
cepting them, and forwarding them to the server.
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Figure 12: Response times for M0 and M1. Shows peaks for
OpenSSL 1.0.1c (VL), scheduled delay (SD) and 1.0.1e (CT),
demonstrating reduced latency. 106 samples, binned at 1µs.

Version Hops D (km) Vmax ML (b) RTT±σ (ms)
1.0.1c 1 0 1.00 0.99 0.73± 0.01

3 0 0.60 0.11 1.2± 0.2
4 4 0.77 0.57 1.30± 0.06

13 12,000 0.63 0.21 180± 30
1.0.1e 1 0 0.62 0.07 0.80± 0.005
1.0.1c-sd 1 0 0.57 0.03 0.75± 0.005

Table 3: Vulnerability against network distance (Hops) and
physical distance (D), for DTLS distinguishing attack.

Figure 12 shows the measured response times for the two pack-
ets, as measured from an adjacent machine (no switch). In the ter-
minology of Section 4, the packets M0 and M1 are the two (se-
cret) channel inputs, and the response time is its output. Each pair
of peaks for M0 and M1 (labelled VL, SD and CT respectively)
in Figure 12 forms a channel matrix with just two columns (M0

and M1), built by taking 106 observations for each input.
The leftmost (VL) peaks are the response times for the vulnera-

ble implementation of OpenSSL 1.0.1c, on the AM3358. Times are
measured, as in the original attack, by sending a modified packet
immediately followed by a valid packet (also captured from the
wire), and taking the response time of the second. This avoids the
problem that DTLS does not acknowledge invalid packets. The
victim executes an echo server, over TLS. As line 1 of Table 3
shows, these peaks are trivially distinguishable, allowing the at-



tacker to correctly guess which packet was sent with near certainty
(Vmax = 100%). This is a leak of 0.99 b of min-entropy.

The rightmost (CT) peaks give the round-trip for the constant-
time implementation of OpenSSL 1.0.1e, which substantially re-
duces the vulnerability—the curves are almost identical. However,
they still differ measurably, as row 5 of Table 3 shows—the two
can still be distinguished with Vmax = 62% probability, while to
be completely secure, we should only be able to guess with 50%
probability. This emphasises the difficulty of producing portable
cross-platform constant-time code, and indicates that the produc-
tion version of OpenSSL (as of writing) is still vulnerable.
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Figure 13: Response times for OpenSSL 1.0.1c, intercontinen-
tal distance. 105 samples, 10µs bins.

As rows 2–4 of Table 3 show, while distinguishability (and hence
vulnerability) drops with increasing network distance, it does so
very slowly. The attack is still easily feasible at the greatest sepa-
ration that we could achieve—launching the attack from an Ama-
zon EC2 instance in Oregon, USA, against our target machine in
our laboratory in Sydney. Despite many routing hops, firewalls,
and great physical distance, the attacker still guesses correctly with
62% probability given only one observation. We thus conclude that
network distance provides extremely poor protection against tim-
ing channels, and that variation of only 10µs is easily distinguish-
able at any point on the internet with good connectivity. Figure 13
shows the two distributions. This supports the mathematical anal-
ysis summarised in Figure 2: adding noise (in this case network
jitter), provides poor protection against timing channels. We now
show that our preferred approach, reducing variance, is much more
effective, as it removes the vulnerability at the source.

6.2 Scheduled Delivery
Our countermeasure to this channel is a system-level black-box

approach that avoids the difficulty of producing portable constant-
time algorithms. We build on the fast context-switches and well-
understood temporal behaviour of seL4 [Blackham et al., 2011], to
impose precise delays on communication. Recent work [Askarov
et al., 2010] suggests policies for automatically setting such delays.
We provide an efficient mechanism.

The effect of a manually-tuned delay is shown by the central
(SD) pair of peaks in Figure 12. As rows 5 and 6 of Table 3 show,
we achieve a lower vulnerability than the constant-time implemen-
tation of OpenSSL (57% distinguishability or 0.03 b leak of min
entropy vs. 62% and 0.07 b). Despite this, our countermeasure re-
duces latency by 6% compared to CD. The better matching be-
tween the curves occurs as nothing in our implementation is data-
dependent, and the only intrinsic penalty is the cost of blocking and
restarting the server, which from the figure is≈ 10µs. We have not
yet managed to find the cause of the small remaining variation in
the response time. For a detailed analysis of this approach, see
Cock [2014].

6.3 Cost
Figure 14 shows the overhead of SD. Each curve plots CPU

load against packet ingress rate, up to the point at which which
packet loss begins (single CPU). For the unmodified OpenSSL
1.0.1c (blue), load increases linearly, with loss beginning with the
onset of saturation at 3000 packets per second. The constant-time
OpenSSL 1.0.1e (red) shows a 10% CPU overhead, consistent with
the increased latency observed in Figure 12, and correspondingly
earlier saturation, at 2800 p/s. The extra cycles are wasted ensuring
that execution time is always worst case.

0

0.5

1

0 1000 2000 3000

C
PU

lo
ad

Ingress rate (packets/s)

1.0.1c
1.0.1e

1.0.1c-sd 1 thread
1.0.1c-sd 2 thread

Figure 14: Performance and overhead of scheduled delivery,
OpenSSL 1.0.1c, and 1.0.1e (constant-time).

The next curve (green), for a single-threaded server under SD, is
close to that for the vulnerable version, with only 1.7% overhead.
This is the benefit of not wasting time in a constant-time implemen-
tation. Instead of busy-waiting, we idle by entering a (low-power)
sleep state, with obvious advantages for mobile devices.

This curve also demonstrates the downside: packet loss begins
at 1400 p/s. Packets arriving while sleeping are dropped, limiting
throughput. This is an extreme case, however, as the echo server
does no work at all, so all CPU time is spent in OpenSSL itself.
In any non-trivial system, the server will work while the packet
handler sleeps, with no throughput loss once OpenSSL is less than
half the load.

The orange curve shows that slack could be re-used to run a
second server thread. This is not secure (as it transforms latency
variation into throughput variation), but demonstrates that we need
not suffer a throughput overhead, given a non-trivial application.
Except the excursion between 1300 and 2200 p/s, due to our sim-
plistic prototype ports of lwIP [Dunkels, 2001] and OpenSSL, we
regain peak throughput of 2800 p/s, still with better overhead than
constant-time.

7. DISCUSSION
Our results highlight the importance of a systematic empirical

approach to timing channels. It is far too easy to overlook poten-
tial channels, and without establishing sound bounds on bandwidth,
one could easily be fooled into a false sense of security.

Our work demonstrates some such pitfalls. For instance, one
would expect cache colouring to be an effective countermeasure,
even against an attacker with access to an accurate measure of wall-
clock time. Specifically (excepting frequency scaling) we expected
the cycle counter to be such a timing source. However, we found
the cycle counter not only to be inaccurate on modern processors,
but in fact influenced by cache misses, and thus creating a timing
channel of its own!

In fact, none of the examined countermeasures were perfect:
IBS, cache colouring, constant-time implementations and sched-
uled delivery all leave residual channels, a depressing realisation.



However, we note that our local exploits were performed under
the most pessimistic assumption of a malicious agent exploiting
a covert channel. The (generally small) remaining channels may
provide sufficient protection in a side-channel scenario, such as a
co-hosted cloud environment. However, we cannot say this with
certainty.

We must also recognise the limitations of our approach: the pre-
cision of our estimates is always limited by the quantity of data
available. Given a finite number of observations, we can only rule
out channels down to a certain bandwidth; there is always the pos-
sibility of a residual channel hiding below the limit of our statistical
precision. For example, even for our best result, IBS on the iMX.31
showing a bandwidth of essentially zero after 10,000 samples per
column, the confidence interval CImax

0 extends to 0.1 b/s, meaning
that there could be a channel of lower bandwidth that we simply
cannot resolve. If a single column were to deviate with a proba-
bility of, say 10−6, we would only expect to see it in one of 100
experiments.

Between the release of the iMX.31 in 2005, and the Exynos4412
in 2012, IBS has gone from an essentially perfect countermea-
sure, to a highly ineffective one. This highlights the strong effect
that subtle (and generally undocumented) hardware effects have on
countermeasures, and the value of careful empirical evaluation.

8. RELATED WORK
Our empirical approach to timing channels is similar to that of

Gay et al. [2013] who measured interrupt-related covert channels
(IRCCs) by experimentally determining the channel’s Shannon ca-
pacity. However, they make the assumption that the channel output
follows a binomial distribution, in order to compute Shannon ca-
pacity in a closed form, and so avoid working with very large chan-
nel matrices as we do (see Section 4). They empirically measure
only the unmitigated channel bandwidth; however, earlier work of
Mantel and Sudbrock [2007] involved a theoretical comparison of
IRCC mitigation techniques under an information theoretic channel
model.

Cache colouring was originally developed to assist real-time sys-
tems to partition the L2 cache into a number of non-overlapping do-
mains [Liedtke et al., 1997]; its potential utility as a cache-channel
mitigation technique is therefore obvious. Various hardware mech-
anisms for cache partitioning have been proposed [Jaleel et al.,
2012], although none are available in the platforms we analyse.

This has recently been analysed by Godfrey [2013] (on the Xen
hypervisor) using an actual side-channel attack, while we build a
synthetic covert-channel attack, and measure the bandwidth reduc-
tion. Unlike Godfrey, we partition kernel as well as user memory.

STEALTHMEM [Kim et al., 2012] is a recent system that gen-
eralises the idea of cache partitioning, offering a limited amount
of stealth memory, rather than partitioning the complete cache.
While this leads to potentially less performance impact, it requires
modifying applications and is only applicable to trusted entities
(senders), while we treat applications as black boxes.

IBS works by correlating clocks, and so is related to determinis-
tic execution techniques, originally used to debug systems [Aviram
et al., 2010a,b; Bergan et al., 2010; Ford, 2012], although without
requiring full determinism. It was implemented in the Hails web
application framework [Stefan et al., 2013], specifically to address
timing channels. Martin et al. [2012] propose modifying the CPU
to add noise to the timestamp counter (RDTSC), which we argue is
inefficient for high-security applications.

Scheduled delivery considers only the external behaviour of a
component—its response time—which it delays to reduce leakage.
Askarov et al. [2010]; Zhang et al. [2011] present an adaptive de-

lay policy to counter remote timing side-channels. We present an
efficient mechanism to implement such a policy.

9. CONCLUSIONS
We have examined representative locally- and remotely-

exploitable timing channels on the verified seL4 microkernel,
and suitable mitigation strategies. We find that instruction-based
scheduling and cache colouring (against cache contention), and
scheduled delivery against remote attacks, are easy to implement
in seL4, without impacting its generality. The exception is the L1
cache flush needed for cache colouring, which x86 doesn’t allow-
ing, requiring expensive explicit cache trashing.

While these mechanisms are effective on older processors, per-
formance optimisation in newer processors not only introduces im-
precision in hardware-generated events, which manifests as non-
determinism, but the degree of imprecision is frequently affected by
user-controlled events, cache misses or branch mis-predicts, which
introduces new channels. Thus more effort is required to treat the
cache channel, forcing the OS developer to play catch-up with the
processor manufacturers.

For remotely-exploitable channels we find that, at least for the
Lucky-13 attack on OpenSSL, OS-level black-box approaches are
more effective, and come with less latency penalty, than the official
“constant-time” mitigation.

In summary: Closing timing channels remains difficult, even for
a small high-assurance system like seL4. Unexpected results show
the importance of a systematic experimental approach to determin-
ing channel bandwidth, to avoid a false sense of security.
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