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ABSTRACT

In this position paper, we suggest that an adversary seeking to ex-

ploit a side channel should be viewed as performing inference un-

der uncertainty. We propose a set of vulnerability measures that

incorporate both observational effort and computational effort. By

deriving Boolean satisfiability as a special case of the marginaliza-

tion problem, we justify that the measure is capable of capturing

the complexity of the underlying deterministic decision problem.

In the limit of unbounded computation the measure reduces to the

efficiency (in number of observations) of naïve Bayesian analysis.

We further hypothesize that in the limit of unbounded observations,

the measure reduces to the complexity of the decision problem.

1. SIDE CHANNELS

The aim of this research is to construct a bound on the vulnerabil-

ity of a secure system, X , due to side channels [BB03,Ber05]. We

define a side channel as a list of observations o = (o1, . . . , on) :
oi ∈ O, derived stochastically from the system’s current state s.

The state consists of three components: σ ∈ Σ — a hidden, sen-

sitive state (e.g. an encryption key); v ∈ V — a visible, or shared

state (e.g. the wall clock time, or a known plaintext) and u ∈ U —

the ‘uninteresting’ remainder of the hidden state. We assume that

the interesting hidden state σ is fixed, while v and u may vary. We

further make the pessimistic assumption that v is under the control

of the attacker.

First, we consider the problem as purely one of inference with

unlimited resources. From the point of view of an attacker, A, the

system behaves as a stochastic functionX : Σ×V ×U → O. The

attacker’s task is to compute the partial inverse — On × V n → Σ.
Assume that we accept some maximum acceptable likelihood of

compromise: ǫ. We will consider the system vulnerable if, with

probability at least ǫ, a hypothetical attackerA can correctly deduce

σ given o and v. We would expect that the likelihood of compro-

mise should in general vary with the number of observations, and

so propose our first pair of vulnerability measures: Pc(n) — the

probability of compromise after n observations and Nc(ǫ) — the

smallest number of observations needed to compromise the system

with P > ǫ.

By defining our measure directly in terms of our desired security

property (likelihood of compromise), we can capture some exist-

ing notions of security. In particular, the property ∀n. Pc(n+1) =
Pc(n) implies no leakage of sensitive information and ∀n. Pc(n) =
|Σ|−1 to maximal security (or noninterference [Rus92] between σ

and v, o). The important distinction between these properties is
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the incorporation of prior information. An attacker has a greater

likelihood of early success if he knows that σ is not uniformly dis-

tributed:

Pc(0) > |Σ|−1 ⇐⇒ ∃σ. Pprior(σ) > |Σ|−1

Both of the above conditions are unattainable in practice, for the

same reason that simple noninterference fails as a security measure

for practical cryptographic systems: the secret input to an encryp-

tion is often completely deducible from its visible inputs and out-

puts. A straightforward example is RSA [RSA78]: a public key,

together with the exponent, uniquely determine the corresponding

private key. Of course, computing the private key is (believed) hard,

and modulo this assumption the system is secure.

If we want to avoid excessive pessimism, we need to consider

this computational effort. We thus extend our basic measures to

Pc(n,w) — the probability of compromise given n observations

and at no more than w effort;Nc(ǫ, w)— the minimum number of

observations needed to compromise with P ≥ ǫ and no more than

w effort and Wc(ǫ, n) — the minimum effort needed to compro-

mise with P ≥ ǫ given n observations. These additional measures

are related to our principle measure, Pc as follows:

Nc(ǫ, w) = min
n

: Pc(n,w) ≥ ǫ

Wc(ǫ, n) = min
w

: Pc(n,w) ≥ ǫ

2. COMPLEXITY OF INFERENCE

The complexity of an attack is thus measured in two dimensions:

the number of observations, Nc, and the computational effort,Wc,

required for a compromise. To give a proof of security, we need to

find a lower bound for at least one of Nc or Wc. We consider Nc

first.

The attacker is making a decision under uncertainty, and after n

observations must select a σ′ ∈ Σ as his best guess at the secret σ.

The optimal attack strategy (with respect to our measure Pc) must

select σ′ = σ with greatest expected probability (with expectation

taken over Σ×O). One algorithm satisfying this is Bayesian infer-

ence with MAP (Maximum A Posteriori) assignment [Mac04]. In

brief, this relies on having access to the distribution P (oi|σ) and
calculating P (σ|o) by repeated application of Bayes’ rule:

P (σ|o1...i) =
P (oi|σ)P (σ|o1...i−1)

P (oi|o1...i−1)

The guess, σ′, is then chosen to maximize P (σ′|o). We can thus in

principle bound Nc(ǫ, w) by Nc(ǫ,∞):

Nc(ǫ,∞) = min
n

: P (σ′

n = σ) ≥ ǫ

σ
′

n = argmax
σ

P (σ|o1...n)



BoundingWc requires us to reason about theminimum complex-

ity of any algorithm solving the decision problem with sufficient

accuracy. We first note that the stochastic function:

X : Σ× V × U → O

is equivalent to the distribution:

P (oi|σ, vi, ui)

and that solving for the partial inverse:

O
n × V

n → Σ

is simply the marginalization problem:

P (o, σ, v) =
∑

u

P (o, σ, v, u)

i.e. we must marginalize over the hidden state. To solve for σ′ given

o and v, we simply maximize the resulting distribution:

σ
′ = argmax

σ

P (o, σ, v)

Unfortunately for our attacker (but fortunately for us), both marginal-

ization and maximization are hard problems in general. The ques-

tion is: how hard, and in what circumstances? We note that any

problem expressible as the satisfying assignment of a finite Boolean

propositional formula is encodable using the following construc-

tion (for each translation, α is a fresh name representing a new

Boolean variable):

T (Q) = ∆(Q is true)

T (¬a) = ∆(α = ¬a)T (a)

T (a ∧ b) = ∆(α = a ∧ b)T (a)T (b)

T (a ∨ b) = ∆(α = a ∨ b)T (a)T (b)

∆Q =

{

1 : Q
0 : ¬Q

‘Marginalizing’ over some subset of {Q} amounts to counting the

satisfying assignments to that subset of propositions (strictly, the

proportion of satisfying assignments), and maximization to finding

one (if the maximum is 0, there are no such assignments). These

problems are respectively #P- and NP-hard [Val79, Coo71]. So

there certainly exist difficult marginalization problems, but how can

we establish that for a given side channel, any associated marginal-

ization problem is hard?

One approach is to show that the associated marginalization prob-

lem must encode a known (or presumed) hard problem. For exam-

ple, if the side-channel observations are known to depend only on

the result of an RSA encryption, then marginalization over the se-

cret key must be at least as hard as solving the RSA problem.

It would be convenient to leverage existing hardness results, by

reducing the stochastic inference problem to a known deterministic

problem. To that end, we propose the following hypothesis:

HYPOTHESIS 1. As n approaches infinity, then all stochastic

elements of observations disappear: we are left with the underly-

ing discrete inference problem. Specifically, Wc(ǫ,∞) is a safe

lower bound for Wc(ǫ, n), and corresponds to the difficulty of the

underlying decision problem.

If true, this would allow us to derive a lower bound on complexity

by appealing to existing results.

3. RESEARCH DIRECTIONS

This approach to assessing vulnerability suggests a number of

interesting questions, which we intend to address in future work:

• Is Hypothesis 1 true?

• Is it possible to automatically identify a control-flow-based

side channel, and build a minimal corresponding inference

model? Doing so would provide a powerful new tool for

vulnerability analysis.

• Are countermeasures based on increasing the complexity of

inference practical, and if so how should they be implemented?

• Can this style of probabilistic reasoning be rigorously inte-

grated with cryptographic techniques, to optimally combine

information gleaned from cryptanalysis (algorithmic weak-

nesses) and side channels (implementation weaknesses)?
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